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Abstract 

We review the technique of 2-dimensional spatial temporal 

focusing (2D STF). STF employs ultrashort lasers pulses, 

which are spatially chirped by a diffractive grating, to 

generate the Fourier-transform-limited pulse only at a focal 

plane. STF offers a widefield illumination feature in two-

photon excited fluorescence microscopy. 2D STF inherits 

this idea but uses a 2D spectral disperser to further stretch the 

out-of-focus pulse in spatiotemporal domain. By giving a 

simple mathematical analysis, we shows the improved 

sectioning ability of 2D STF compared with STF. 2D STF 

based two-photon excitation fluorescence microscopy can 

realize fast volume imaging. An example to trace the 3-

dimensional Brownie motion is demonstrated. 
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１．Introduction 

Spatiotemporal focusing (STF) is a useful technique 

that provides widefield illumination with optical sectioning 

ability for multiphoton processes [1,2]. Since the sectioning 

ability no longer relies on a tightly focused beam spot, as in 

the spatial focusing scheme, it does not require a scanner to 

obtain a two-dimensional image. Therefore, STF offers an 

excellent way to decrease the illumination time. For multi-

photon microscopy applications, a fast widefield imaging 

was realized in STF with amplified laser pulses [3,4]. For 

micro-fabrication applications, STF realized high-

throughput 3D freeform microstructures processing [5,6]. In 

addition to the advantage of fast illuminating, the widefield 

illumination feature has been combined with photo-activated 

localization microscopy (PALM) or the structured light 

illumination (SLI) method to achieve depth-resolved super-

resolution imaging [7-9]. Similarly, for optogenetic control 

of neuronal activity, single cell in 3D space were precisely 

excited by patterning the widefield illumination [10-12]. 

Furthermore, by combining spatial focusing with STF, the 

undesirable nonlinear effects were reduced in laser 

processing. [13]. 

However, since the conventional STF disperses the light 

only into one-dimensional (1D) space by a diffractive grating, 

its axial resolution is comparable to a conventional line 

focusing system [14]. Moreover, compared to two-photon 

laser-scanning microscopy (TPLSM), the relatively high out-

of-focus background limits its imaging depth [15]. For this 

paper, 1D STF is referred to temporal focusing with 1D 

spectral disperser. On the other hand, 2D STF use a 2D 

spectral disperser to extend 1D STF to a two-dimensional 

(2D) STF. The 2D spectral disperser employing a virtually 

imaged phased array (VIPA) generates a 2D matrix of 

dispersed light at a Fourier plane. The 2D spectral disperser 

was previously used for wavelength de-multiplexing in 

optical communication [16], 2D pulse shaper [17], 

frequency-comb spectroscopy [18] and serial time-encoded 

amplified imaging [19]. In 2D STF, we set the back aperture 

of the objective lens after this 2D matrix of dispersed light. 

Using this setting, at the focal plane, the pulse is Fourier-

transform-limited. At the out-of-focus plane, the pulse is 

further stretched in the spatiotemporal domain compared to 

1D STF so that the axial excitation confinement ability 

equals to that of a point-scanning system while we retain the 

widefield illumination feature. 

From our analytical prediction on 2D STF, the 

extremely small free spectral range (FSR) is necessary for a 

VIPA to reduce the out-of-focus excitation by several orders 

of magnitude when we excite inside a sample [20]. This is a 

major difference from the previous work using multiline STF 

[21,22]. The basic advantages of 1D STF can be succeeded 

by 2D STF.  

2. Theoretical analysis of 2D STF 

In this section, we take an analytical approach for the 

spatiotemporal profile and axial confinement ability of 2D 

STF. The setup of 2D STF is shown in Fig. 1. For the 2D 

spectral disperser, we put the diffractive grating orthogonal 

to the VIPA to make the two dispersing directions of the light 

orthogonal to each other. Additionally, we choose the focal 

length of two cylindrical collimating optics to make the 

lateral spatial chirping length same in both directions at the 

Fourier plane. Inside the VIPA, the laser beam reflects 

multiple times back and forth and thus forms a multiple 

delayed beam array, which acts as a high-order grating [24]. 

We can describe the angular dispersion generated by VIPA 

after objective lens as: 
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Fig. 1. Setup of 2D STF microscopy [23] 

where ( )
VIPA

θ ω   is the angle of the angular dispersion at 

VIPA, ω  is the angular frequency of the input light, and 

VIPAγ  is the constant determined by the VIPA specifications, 

the input angle for the VIPA [25], and the magnification ratio 

between the focal length of the collimating lens and objective 

lens. Because the free spectrum range is very small for the 

VIPA, different diffraction orders overlap spatially. 

Consequently, we take a convolution with delta functions to 

discriminate different diffraction orders with 

+1- =2n n FSRω ω π , where 
nω  is the central angular frequency 

for the n th  diffraction order and FSR  is the free spectral 

range of the VIPA in an unit of frequency. Then at the focal 

plane of an objective lens, once we pre-compensate the 

material dispersion of the whole system, we can get Fourier-

transform limited pulse as following: 
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where ( , )A x y  is the illumination beam profile, 

2
( ) exp[ ( / ) ]E ω ω= − Ω  is the spectrum profile of the pulse 

with a spectrum width (FWHM) of 2 2In Ω , cω  is the 

central frequency. Along x direction ( )
x Grating

θ ω γ ω=  

describes the linear spectrum phase generated by the grating 

with a constant of 
Grating

γ  which is determined by the groove 

density of grating and magnified by the ratio between the 

focal length of the collimating lens and objective lens.  Along 

y direction ( )
2

( ) exp[ / ]
s

S ω ω= − Ω  is the diffraction 

efficiency profile of each diffraction order with a spectrum 

width (FWHM) of 2 2
s

In Ω  [26, 27] and ( )y VIPAθ ω γ ω=  

describes the linear spectrum phase in Eq. (1). To simplify 

calculation, we assume that the wavevector of each 

frequency is approximated as 2 / ck π λ= , the wavevector of 

the center wavelength of the pulse.  

To obtain the spatiotemporal profile away from the 

focal plane, using the paraxial approximation, first we 

perform Fourier transform in spatial domain and add the 

quadratic phase due to diffraction. Then, the field becomes 

as following: 
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where ( ),
x y

A k k
～

 is the Fourier transform of ( , )A x y . In Eq. 

(3), we ignore all the constant phase terms that have no 

relationship with either the lateral position or the frequency. 

In order to do inverse Fourier transform back to the spatial 

domain, we consider the spatial change of each frequency 

along its own propagation direction, '
( )x x xk k kθ ω= −  and 

' ( )y y yk k kθ ω= − . By this view, Eq. (3) becomes as 

following: 

            



( )

( )

'2 2

' ' ' ' '

' 2 2

'

( )
( , , , ) , exp ( ) ( )

2 2

( )
exp ( ) ( ) .

2 2

x x

x y x y x x c

y y

y y n

n

zk zk
E k k z A k k i iz k i E

k

zk zk
i iz k i S

k

θ ω
ω θ ω ω δ ω ω

θ ω
θ ω ω δ ω ω

+∞

=−∞

   
 ∝ − − − ⊗ −   

   

   
× − − − ⊗ −  

    
∑

～ ～

                                                                 (4)

In Eq. (4), we find the dispersion terms 2
exp[ ( ) / 2]xizkθ ω−  

and 2exp[ ( ) / 2]
y

izkθ ω−  which are generated from the 

diffraction due to the spatiotemporal coupling. By inverse 

Fourier transform in the spatial domain, we get 
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In Eq. (5), we can ignore the frequency dependency for 
'
( , )A x y , the out-of-focus illumination beam profile. This is 

valid if ( , )A x y is much larger than the diffraction limited 

spot size as the case for wide field illumination. By inverse 

Fourier transform in temporal domain, we get 
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where ' ' 2( ) exp ( / )e t t τ = −   is the chirped pulse with half 

the 2
1/e pulse width of 

' 22
= 1 ( / )
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Ω
, 

' ' 2( ) exp ( / )
s

s t t τ = −   is the chirped envelope pulse with 
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s Ry
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=  are the Rayleigh lengths, and 

x xθ γ= Ω  and 
y y sθ γ= Ω  are the dispersion angles.  

Fig. 2 shows the schematics of spatiotemporal profile 

around focal plane. Along the propagation direction, 

compared with 1D STF, not only the intra pulse but also the 

envelope pulse are stretched. It is worthy to note that the 

extremely small FSR offers enough temporal displacement 

between each intra pulses, as shown in Fig. 2(e) and (f), 

which is necessary to suppress the interference effect over 

hundreds of micrometer depth. Then, the two-photon 

excitation (TPE) intensity is further confined as following: 
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where 
0I  is the TPE intensity at focal plane. The spatial 

width (FWHM) of ( )TPEI z  is 3  times as narrow as that of 

1D STF whose TPE intensity distribution is proportional to  

2
1/ 1 ( / )

Rx
z z+ [14] if we set =x yθ θ . We can simply use the 

dispersion angles as the effective numerical aperture (N.A.) 

to evaluate the sectioning ability. Moreover, the out-of-focus 

TPE of 2D STF is proportional to ( )
2

1/ z , which is further 

suppressed  than that of 1D STF. Once the fluorescent 

material becomes optically dense, this result becomes a 

significant advantage for deep imaging since the intensity of 

the illumination light decreases along the penetration depth 

in an exponential function [28]. To compensate the 

illumination intensity decrease at the deep focal plane by 

increasing the laser power and at the same time to suppress 

the out-of-focus background generated near side of the focal 

plane, 2D STF will definitely outperform 1D STF. 

3. 2D STF Microscopy 

In this section, we will show the application of 2D STF 

in two-photon excitation fluorescence microscopy. In our 

microscopy setup, the FSR of the VIPA is 50 GHz, which 

corresponds to a 2-mm thickness and a refractive index of 

1.5. The groove number of the grating is 150 lines/mm, the 

input angle for the VIPA in air is set as 0.05 rad and the input 

beam width is 90 µm. The focal length of the collimating 

optics for the grating and the VIPA are 1000 mm and 400 

mm. The objective lens is UPLSAPO 60XW (Olympus) with 

N.A. of 1.2. With this design, the dispersion angles, xθ  and 

yθ  are around 0.75 and the back aperture of the objective 

lens will cut the tail of the spectrum matrix. In order to get 

enough peak power, we use a chirped pulse amplification 

(CPA) laser source with a central wavelength of 803 nm, a 



 

Fig. 2 Spatiotemporal profile of 2D STF: the cross section of pulse around focal plane at y=0 (a) and x=0 (b), the light speed is 

c , the period of pulse is T , the transient 2
1/e  beam width along x and y  direction are 2 xw  and 2

y
w ; (c) the spatiotemporal 

profile of single period along x  direction in (a) at focal plane and (d) out-of-focus plane, the 2
1/e  Fourier transform limited 

pulse width is 2τ , the 2
1/e  illumination beam width is 2 x∆  at focal plane and 

'2 x∆  out-of-focus plane, the scanning time is 

2 xt∆  at focal plane and 
'2
x

t∆  out-of-focus plane; (e) the spatiotemporal profile of single period along y  direction in (b) at 

focal plane and (f) out-of-focus plane, the 2
1/e  Fourier transform limited envelope pulse width is 2 sτ , the 2

1/e  illumination 

beam width is 2 y∆  at focal plane and 
'2 y∆  out-of-focus plane, the scanning time is 2

y
t∆  at focal plane and 

'
2 yt∆  out-of-focus 

plane. 

pulse duration of ~50 fs (FWHM), and a repetition rate of 1 

kHz. We also integrate a piezo stage and a scientific CMOS 

(sCMOS) camera for the imaging system in order to achieve 

fast scanning in z direction and 2D single shot imaging. 

Limited by the acquisition time of sCMOS camera, the 

imaging region is limited to 128 by 216 pixels for every 

single shot imaging with a frame rate of 1 kHz. By scanning 

in z direction, we capture a volume image of 17.8 µm by 10.6 

µm by 5.4 µm (z) at 50 volumes per second. 

As a demonstration, we trace the Brownian motion of a 

1 µm fluorescent bead [29]. When there are lots of beads 

close to each other, a displacement less than the radius of 

bead is necessary to discriminate the target bead from 



 

Fig. 3 Brownie motion: (a) volume imaging of 1µm beads at 

0 msec, (b)-(e) lateral slices of volume imaging of (a) at 

selected axial positions, (f) volume imaging of 1µm beads at 

400 msec, (g)-(j) lateral slices of (f) at selected axial 

positions, (k) measured 3D displacement of left upper bead 

in (a) over 3 sec. 

neighbor beads during movement. Otherwise, we will 

confuse with many possible trajectories. In order to realize 

this, the root mean square (RMS) displacement of movement 

between neighbor frames should be less than the radius of 

the bead. Since the RMS displacement is proportional to 

t∆  where 1/ t∆  is the volume rate, our system which has a 

volume rate of 50 Hz can offer a RMS displacement around 

240 nm according to the calculation [30]. It is roughly half 

of the radius of the bead and is able to trace the random path 

of Brownian motion. Fig. 3 (k) shows the measured 

displacements during a few seconds. We use weighted 

algorithm to determine centroid with sub-pixel resolution. 

The measured RMS displacement is 226 nm, which matches 

well with the numerical calculation. 

4. Conclusion 

A 2D STF system is able to increase the confinement 

ability, both axial resolution and out-of-focus TPE, and 

simultaneously maintain the fast widefield illumination 

property of 1D STF. We theoretically analyzed the 

spatiotemporal profile of 2D STF and confirmed the axial 

confinement ability. We also demonstrated 50 Hz volume 

imaging to trace 3-dimensional Brownie Motion with 2D 

STF microscopy. 
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